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The association between lung cancer and exposure to radon decay products has been well established. Despite agreement on this point, there is
still some degree of uncertainty regarding characteristics of the exposure-response relationship. The use of studies of underground miners to esti-
mate lung cancer risks due to residential radon exposure depends upon a better understanding of factors potentially modifying the
exposure-response relationship. Given the diversity in study populations regarding smoking status, mining conditions, risk analysis methodology,
and referent populations, the risk estimates across studies are quite similar. However, several factors partially contributing to differences in risk esti-
mates are modified by attained age, time since last exposure, exposure rate, and cigarette smoking patterns. There is growing agreement across
studies that relative risk decreases with attained age and time since last exposure. Several studies have also found an inverse exposure-rate effect,
i.e., low exposure rates for protracted duration of exposure are more hazardous than equivalent cumulative exposures received at higher rates for
shorter periods of time. Additionally, the interaction between radon exposure and cigarette smoking appears to be intermediate between additive
and multiplicative in a growing number of studies. Quantitative estimates of these modifying factors are given using a new analysis of data from the
latest update of the Colorado Plateau uranium miners cohort.- Environ Health Perspect 1 03(Suppl 2):49-53 (1995)
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Introduction
The association between lung cancer and
radon gas (222Rn) and its decay products
(radon progeny) has been well document-
ed (1-4). Despite the abundance of evi-
dence that exposure to radon decay prod-
ucts causes lung cancer, there is still uncer-

tainty concerning the characteristics of the
exposure-response relationship. Among
the issues still being debated are the appro-
priateness of using epidemiologic studies
of miners for indoor radon risk estimates,
the existence and nature of an exposure-
rate effect, the form of the radon/smoking
interaction, and modification of relative
risk by a number of temporal factors.
These issues must be addressed to provide
a better understanding of lung cancer risks
to both miners and the general public.

Next to cigarette smoking, radon expo-

sure poses the greatest risk of lung cancer,
with an estimated 6600 to 24,000 lung
cancer deaths per year in the United States
attributable to indoor radon and its decay
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products (5). Even though extrapolation
from miner populations to indoor environ-
ments is problematic, the miner-based risk
models remain essential to our understand-
ing of the radon/lung cancer relationship.
A number of case-control studies of indoor
radon have been initiated in recent years;
but these studies often have serious
methodologic problems, especially in accu-
rately assessing historical indoor exposure
levels. Because of the lack of accurate expo-
sure data to characterize retrospective
indoor radon levels, it is necessary to exam-
ine important determinants of the
radon/lung cancer risk relationship in
underground miners.

The purpose of this presentation is to
provide an overview of current occupa-
tional epidemiologic studies of radon
decay products, with particular attention
to the nature of the exposure-response
models and factors that may modify this
relationship. The latest results of many
international miners studies will be pre-
sented, with quantitative examples from a
new update and analysis of uranium min-
ers from the Colorado Plateau of the west-
ern United States. Since this presentation
is directed at a broader view of
exposure-response modifiers across several
different studies, details of the new analy-
sis of the Colorado Plateau study will not
be provided. An article reporting an in-
depth description of the latest analysis is
in preparation.

Form of the Exposure-
Response Model
Most attempts to quantify the dose-
response relationships in radon research
have centered on the linear relative risk
model (4,6). There are persuasive argu-

ments for a linear relationship made by
radiobiologists using the one-hit theory
and other mechanistic models. Another
advantage of the linear model is that its
simplicity facilitates comparisons across

various study populations.
This review of risk models across differ-

ent epidemiologic studies of miners will
focus on the linear model. In most studies
relative risk models are the method of
choice since they provide an adequate fit to
most data and they are generally simpler in
form than attributable risk models. The
general form of the linear relative risk
model is:

(tZ) = XO(t)( +fiz)

where X(tz) is the lung cancer mortality
rate at age t, with exposure z, X0(t) is back-
ground or unexposed lung cancer mortality
rate at age t, and is the linear risk coeffi-
cient to be estimated.

Table 1 summarizes the linear relative
risk relationships in seven of the major
studies of underground miners. With the
exception of the Colorado Plateau data, the
estimates range from 0.6 to 3.6% excess
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Table 1. Exposure-response relationship in seven miners studies.

Study Excessive relative risk/WLM Reference

Chinese tin miners 0.6% Xuan et al. (12)
Czech uranium miners 1.5% Sevc et al. (9)
Beaverlodge (Canada) uranium miners 3.3% Howe et al. (10)
Ontario (Canada) uranium miners 1.3% Muller et al. (24)
Newfoundland fluorspar miners 0.9% Morrison et al. (7)
Swedish iron miners 3.6% Radford and Renard ( 1 1)
Colorado Plateau (US) uranium miners 0.2-1.6%a Hornung et al. (25)

'Reported as a range due to modification of relative risk by temporal factors, exposure rate, and cigarette smoking.
Lowest risk is for older miners, longer time since last exposure, and higher exposure rates.

relative risk per unit exposure (working-
level month [WLM]). A working-level
month is defined as any combination of
exposure time and exposure level equiva-
lent to 170 hr at one working level (WL).
One WL is the concentration of short-lived
radon decay products per liter of air giving
rise to 1.3 x I05 MeV of a-radiation.
Given the wide difference in populations
in these studies, smoking habits, type of
mining conditions, and risk analysis
methodology, these estimates are fairly
homogeneous. However, there are several
factors that may further explain much of
the difference in these risk estimates.

Because of the existence of a number of
such effect modifiers (interactions) in the
Colorado Plateau data, Table 1 reports a
range of relative risk coefficients rather
than a single, possibly misleading, overall
estimate of excess relative risk.

Modifiers of Relative Risk
Estimates
Atained Ag
The background risk of lung cancer rises
rapidly after age 40, reaching a peak in the
late 60s or early 70s. For linear relative risk
estimates to be meaningful, they must
remain stable over all age ranges. In many
recent analyses of mining cohorts, there has
been a discovery of a decrease in relative
risk per WLM with increasing age at risk
(3,4,7-9). One explanation for this phe-
nomenon may be that the high relative risks
estimated for large exposures would be dif-
ficult to maintain as background lung can-
cer risks rise in older age groups. This
implies that the proportional hazards
assumption for relative risk models, i.e.,
that excess risk is proportional to back-
ground at all ages, does not hold. If this is a
general pattern in all radon-exposed
cohorts, then it is misleading to cite an
overall risk coefficient. Only age-specific
risk coefficients would be meaningful.
Comparison of results among several stud-
ies would require estimation of excess rela-

tive risk for each of several age intervals.
Since most of the miners cohorts listed in
Table 1 have quite different age distribu-
tions and each generally reports overall rela-
tive risk, this may partially account for dif-
ferences in risk coefficients.

In our recent analysis of the Colorado
Plateau uranium miners cohort, we quanti-
tatively modeled the relative risk of lung
cancer as a function of cumulative radon
exposure for three different intervals of
attained age: < 60, 60-70, and > 70. We
chose a linear relative risk model versus the
power function model used in an earlier
analysis (3) because the linear model now
produces slightly lower deviance in the
updated follow-up through 1990 and is
simpler to interpret. Plots of the three linear
relationships are given in Figure 1. Table 2
contains relative risk estimates for several
combinations of cumulative exposure and
attained age.
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Time since Last Exposure
Most of the miners in Table 1 worked for
relatively short periods in underground
mining compared to typical duration of
employment in other occupational studies.
The average duration of exposure ranged
from approximately 2 years for the
Beaverlodge study (10) to 18 years for the
Swedish study (11). The mean duration of
underground exposure among the Colorado
Plateau miners was approximately 4 years.
For this reason, much of the time of follow-
up in these studies includes inactive person-
years, i.e., person-years when no additional
exposure to occupational radon progeny is
occurring. It is of interest, therefore, to
determine if relative risk estimates change
with increasing time since last exposure.

Several studies have found that there is a
statistically significant decline in relative risk
with increasing time since last underground
mining (3,4,9,12). Although time since last
exposure is certainly correlated with age,
these effects seem to be independent, at least
in the Colorado Plateau study and the BEIR
IV combined analysis of four cohorts. If this
effect is applicable to other cohorts (some of
which made no mention of having tested for
it), we have a second temporal factor that
could account for observed differences in
risk coefficients across miners studies.

Our analysis of the Colorado Plateau
data models the effect of time since last
exposure as an exponential decay in relative
risk. The half-life of age-specific relative
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Figure 1. Age-specific linear relative risks.
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Table 2. Relative risk among Colorado Plateau miners, by exposure and age categories using the linear relative
risk model for exposure and adjusting for smoking and time since last exposure.

Age
Exposure < 60 60-70 > 70

50 WLM 1.33 [1.07,1.58] 1.06 [1.01,1.10] 1.03 [.99,1.05]
100 WLM 1.66 [1.13,2.18] 1.11 [1.03,1.20] 1.05 [.99,1.11]
500 WLM 4.28 [1.67,6.88] 1.56 [1.14,1.99] 1.27 [.99,1.55]
1000 WLM 7.56 [2.34,12.77] 2.13 [1.28,2.981 1.53 [.98,2.09]
5000 WLM 33.79 [7.73,59.84] 6.64 [2.41,10.87] 3.67 [.89,6.45]

risk is approximately 15 years after the end
of effective exposure (retirement from min-
ing plus 5-year lag). This means that the
relative risk for a given cumulative expo-
sure is reduced by 50%, 15 years after
effective exposure, compared to current
miners and those within 5 years of last
exposure. Figure 2 represents a plot of the
proportional decline in relative risk as a
function of years since last exposure.

Exposure Rate
Most studies of the relationship between
exposure to radon progeny and lung cancer
utilize cumulative exposure as the primary
causative agent. The use of cumulative
exposure carries with it the implicit
assumption that exposures to high levels
for short periods are etiologically equiva-
lent to long-term exposures to low levels of
radon progeny. Animal and in vitro studies
(13-15) have shown that the exposure rate
or intensity is an important factor in addi-
tion to cumulative exposure. Specifically,
these studies indicated that protracted

10

exposures at low levels of exposure were
more carcinogenic than shorter term expo-
sures to high levels of a-radiation. A simi-
lar effect was observed for epidemiologic
studies in earlier analyses of the Colorado
Plateau uranium miners (3,16).

Since then, an inverse dose-rate effect
has also been observed in several other
studies of miners (9,17,18). Although
similar effects have not been observed for
low Linear Energy Transfer (LET) radia-
tion, i.e., y-radiation, X-rays, etc., there
have been at least two explanations offered
for the presence of an inverse effect in a-
radiation studies. Brenner and Hall (19)
suggest that one would expect an inverse
dose-rate effect at higher dose rates due to
the wasted dose from multiple traversals of
individual lung epithelial cell nuclei when
one traversal is sufficient to cause genetic
alterations. Elkind (15) hypothesizes that
cells are more sensitive to transformation
during certain time windows near mitosis.
This would make protracted exposures
more hazardous since more cells would

20 30

Time since last exposure, years

Figure 2. Decline in relative risk as a function of time since last exposure; 95% confidence intervals denoted by
broken lines.

progress into the sensitive windows over a
long period without a high probability of
being killed.
We reestimated the dose-rate effect in

our most recent analysis of the Colorado
Plateau uranium miners study. We consid-
ered exposure rate both as an independent
multiplicative effect on the linear cumula-
tive exposure model and as an effect modi-
fier by introducing an interaction term
between cumulative exposure and exposure
rate. The latter model was simplified by
examining the interaction of exposure rate
with a dichotomous variable for cumula-
tive exposure indicating cumulative expo-
sure above or below the mean for the cohort.

When exposure rate was introduced as
an independent effect in the risk model,
the regression parameter was negative
(f3=-0.18, SE=0.06), indicating a higher
risk for protracted exposures. The magni-
tude of the estimate was larger than previ-
ously estimated using vital status follow-up
through 1982 (3). Our current analysis
indicated that a 10-fold reduction in dose
rate will increase the relative risk by 51%.
Figure 3 illustrates the protraction effect as
a function of exposure rates. When the
interaction of exposure rate and cumulative
exposure was introduced into the model,
the result was not statistically significant
(p= 0.06), but suggestive of a stronger
inverse effect at higher levels of exposure.

Radon/Smoking Interaction
One of the most important issues regarding
the lung cancer risk associated with radon
exposure is the effect of cigarette smoking
on this relationship. Conclusions as to the
nature of this interaction have varied across
different studies. Radford and Renard (11)
reported that the interaction among
Swedish iron miners was additive, i.e., the
relative risk for a miner who smoked was
roughly the sum of the relative risks for
radon progeny exposure and cigarette smok-
ing. A similar finding was reported by Sevc
et al. (8) for the Czech uranium miners. An
analysis by Samet. (20) of a cohort of New
Mexico uranium miners (largely distinct
from the Colorado Plateau cohort) indicat-
ed that the interaction was essentially multi-
plicative. This would imply that the joint
effect of exposure to radon decay products
and cigarette smoking can be estimated as
the product of their individual relative risks.
The combined analysis of four cohorts
(Colorado, Swedish, Ontario, and
Beaverlodge) by the BEIR IV Committee
(4) found an interaction intermediate
between additive and multiplicative. A
similar intermediate effect was reported in
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Figure 3. Increase in relative risk as a function of an x-fold reduction in exposure rate; 95% confidence limits
denoted by broken lines.

the most recent analysis of the Chinese tin
miners cohort (12).

The analyses of the Colorado Plateau
data benefited from the fact that it is the
only miners cohort with smoking informa-
tion on each member of the study. An ear-
lier analysis of these data with vital status
follow-up through 1977 indicated a multi-
plicative radon/smoking interaction
(21,22). With an additional 5 years of fol-
low-up (vital status through 1982), the
relationship appeared to be intermediate
between additive and multiplicative (3).

Since those analyses, NIOSH has con-
ducted a smoking status survey of surviving
miners and next of kin of deceased miners.

Table 3. Results of NIOSH smoking survey.

Respondents Nonrespondents

Total number 2205 1142
Alive 1330 304
Deceased 867 832
Unknown 8 6
Lung cancers 224 153
Median exposure 420 449

Prior smoking category,' percent
Never 20 13
Current 69 79
Former 11 8

New smoking category percent
Never 17
Current 32
Former 51

'Smoking status distribution based upon data collected
prior to 1969. These data were used in all previous
analyses of Colorado Plateau data. bSmoking status
distribution reported by respondents to questionnaire
mailed in 1986. Results from this questionnaire were
used to update smoking data when appropriate.

Table 3 illustrates the reported changes in
smoking status since the previous survey

with smoking data through 1969 (23).
We used these new smoking data to

more closely examine whether the
radon/smoking interaction was continuing
to move away from multiplicative toward
additive. Results indicated that the inter-
action was still intermediate between addi-
tive and multiplicative and had not

changed substantially since the 1982 fol-
low-up, even though there were 8 addi-
tional years of mortality data. There is,
however, a suggestion that the interaction
is decreasing from multiplicative as follow-
up lengthens and the cohort ages,

although this trend is not statistically sig-
nificant. Table 4 shows the nature of the
radon/smoking interaction by length of
follow-up for several miners cohorts.

Discussion
There is no doubt as to the causative rela-
tionship between exposure to radon progeny

and lung cancer. All of the studies of miners
have demonstrated a strong exposure-

response relationship. What remains as a

matter for additional study is the accurate

estimation of the excess risk per unit of

exposure and the identification and nature
of factors that alter this relationship. Table 1
indicates that the differences in risk coeffi-
cients are not great given substantial differ-
ences in study populations, referent popula-
tions, and statistical methods of analysis.
However, several factors have been identi-
fied in a number of studies which could fur-
ther account for observed differences in
excess relative risk. These factors include
age, time since last exposure, exposure rate,
and cigarette smoking. Since all studies of
miners differ to some degree with respect to
the distribution of these factors, it is impor-
tant to consider their effects when compar-
ing risk coefficients across studies.

Investigation of the effect of these mod-
ifying factors is especially important when
considering the risk to the general popula-
tion from indoor radon. The use of results
from studies of underground miners to
estimate risks from radon in the home
environment is widely debated. However,
the limitations in case-control studies of
indoor radon, such as the lack of data on
historical exposures and generally low sta-
tistical power, make the results from stud-
ies of miners our best source for current
indoor risk estimates.

The effects of these modifying factors
have important implications with regard
to understanding the indoor radon
problem. For example, if the interaction of
cigarette smoking and radon exposure is
multiplicative then there is enormous
benefit to smoking cessation programs in
high radon areas. However, if the effect is
submultiplicative, the risk to nonsmokers
may be substantial on a relative-risk scale.
Similarly, if the inverse exposure-rate
effect holds at the lower levels experienced
in homes, then extrapolation from the
higher exposed mining populations could
actually underestimate risk to the public.
A decrease in relative risk with the temporal
effects of attained age and time since last
exposure would emphasize the potential
benefit of radon mitigation programs,
especially for younger residents. We
believe that further examination of these
modifying factors is the key to a responsi-
ble public health response to the radon
problem.

Table 4. Nature of radon/smoking interaction by length of follow-up.

Study Length of follow-up Joint effect Reference

Colorado Plateau 30 years Submultiplicative Hornung et al. (25)
Swedish iron miners 44 years Additive to submultiplicative Radford and Renard (11)
Czech uranium miners 25-30 years Additive to submultiplicative Sevc et al. (9)
New Mexico uranium miners 18 years Multiplicative Samet (20)
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